Backer Profile: Themis Palpanas – Director of diNO Group, Paris Descartes University

Themis is aThemis Palpanas professor in LIPADE, the computer science department of the Paris Descartes University and a director of the Data Intensive and Knowledge Oriented Systems (diNo) group. He is also very active in the data management and engineering community as Research Track Associate Editor for VLDB, Editor in Chief for the Big Data Research (BDR) journal, and Associate Editor for the Transactions on Knowledge and Data Engineering (TKDE) journal.

Professor Palpanas’ research is on problems related to online and offline data analytics (focusing on fast streams and massive collections). His group has world-leading expertise on time series management, indexing, and mining. Together they have developed the current state-of-the-art data series indexes, iSAX2+ (bulk loading) and ADS+ (adaptive indexing), the only data series query workload benchmark, as well as DSStat, a toolset for data series preprocessing and visualization.

They have applied their techniques on streaming and uncertain data series, and have worked with data from diverse domains, such as home networks, road tunnels, and manufacturing. The CrowdSignals.io data will significantly help their efforts in building efficient tools for the management and analysis of such data, as well as in delivering effective applications to end users for capitalizing on the data they produce.

Learn More:
Professor Themis Palpanas
The diNO group

Featured Sponsor: Data Quality Research Group, UFCG

Thiago NobregaThiago Nóbrega is a student in the Department of Computing Systems of the Federal University of Campina Grande (DSC/UFCG) and a member of the Data Quality Research Group. DQRG is a research group that investigates and develops novel techniques, approaches, processes, and tools for evaluating and improving the quality of data sets, taking into account critical aspects of contemporary data analysis: reliability and performance.

DQRG- UFCG
The main focus of the group is to facilitate and improve the effectiveness of key tasks that rely on the quality of the data, such as: data integration, schema integration, data mining and decision making. The group is formed by students, faculty, and staff from the Department of Computing Systems of the Federal University of Campina Grande (DSC/UFCG).

Learn More:
Data Quality Research Group Homepage

Backer Profile: Ming Zeng, Doctoral Student at Carnegie Mellon University

Ming Zeng   Ming Zeng is a Ph.D. student at Carnegie Mellon University. His research interests include machine learning, deep learning, human behavior modeling, and natural language processing. His work is primarily focused on deep neural networks (DNNs) for human activity recognition. The deep learning models used in his work mainly include convolutional neural networks (CNNs) and Long Short Term Memory (LSTM) with different architectures according to different applications. In addition, instead of treating the deep neural network as a black box, he is trying to interpret the features extracted from DNNs.

CNN 4 AR

Ming will explore the CrowdSignals.io data in the human activity recognition related areas. Deep neural networks can take advantage of the large dataset to train a good model. In addition, because the CrowSignals.io dataset involves a number of sensors, it is worth trying neural networks with a sensor fusion approach.

Learn More:
Homepage: Homepage at CMU
Connect with Ming on LinkedIn

Backer Profile: Nima Nikzad, Viterbi Fellow at Scripps Translational Science Institute

Nima NikzadNima is currently the Viterbi Fellow of Digital Medicine at the Scripps Translational Science Institute, where he is kick-starting new research and engineering efforts related to the use of wearable and passive sensing devices in healthcare. As the first engineer to be working on mHealth related efforts at STSI, he works closely with a team of physicians and statisticians across STSI and the Scripps Health hospital system to develop new technologies that address the needs of patients and physicians. He believes that patient collected data, from outside the clinical setting, will play a major role in ensuring that the future of medical care is both scalable and affordable. Reaching that point will require advances in sensing technologies, user-context recognition, energy-management, and machine learning. His research focuses on the development of new sensing devices (particularly those related to air quality and respiratory health monitoring) and analytical techniques for turning the data collected by phones, wearables, and in-home devices into actionable information for physicians and researchers.

There is a great deal of variance in how individuals interact with technology and the world around them, making the evaluation of context-recognition systems, energy-saving optimizations, and other systems research extremely challenging. The large and diverse CrowdSignals.io dataset, collected by real users in the field, will help us develop more accurate models of how people interact with technology, one another, and the world around them. In particular, the data will be extremely valuable in our dynamic energy-management work, which adjusts sensor and application behavior based on user-context, interaction, and device state.

Learn more:
Homepage at Scripps
Connect with Nima on LinkedIn
Follow Nima on Twitter

Featured Sponsor: TwoSense – Empowering Businesses and Individuals with Their Own Data

TwoSenseTwoSense was founded in 2013 by Dawud and Ulf, two researchers in the field of personal data analytics. They saw an imbalance in the quality and quantity of data that was available to large corporations, and the utility that was being offered to users from the majority of businesses they interact with.

They set out to close this gap by creating technology to give the user a data set of their own real-world and digital behavior, and the ability to get value and utility from it.

TwoSense’s mission is give users their personal data, help them get value and utility from it. They give users the tools they need to track themselves effortlessly, and the ability to share what they want with the businesses they interact with in perfect clarity. The result is better data for businesses to deliver value and utility to the user, and more control and transparency for the user.

TwoSense Features

TwoSen.se is a mobile data analytics company. Their unique experience and expertise allow them to develop and use embedded, hyper-efficient machine learning algorithms for data collection and fusion that run on the device. This approach allows them to reduce power consumption and network usage to a minimum, reducing the cost of ownership to the user. It also provides data availability on mobile in near real-time by cutting out the need for network API turnaround.

They are also experts in processing large data sets using cutting edge analytics algorithms and technologies. Their cloud engines employ deep convolutional networks combined with probabilistic models and methods to combine data across users and applications and create uniquely accurate and effective insight.

By leveraging their expertise and distributing the data processing pipeline across mobile and cloud, TwoSense creates a unique stack for highly-efficient data collection, processing, analysis and insight delivery in real time for our users and customer.

Website: http://twosen.se/
Facebook: https://www.facebook.com/TwoSenseLabs
Twitter: https://twitter.com/twosenselabs

Featured Sponsor: Database, Data Mining, and Bioinformatics Lab – UC Santa Barbara

DBL UCSB
The Database, Data Mining, and Bioinformatics lab’s (DBL)
research focuses on network science, scalable querying, and mining of graphs, and bioinformatics.

Network science is a new and emerging scientific discipline that examines the interconnections among diverse physical or engineered networks, information networks, biological networks, cognitive and semantic networks, and social networks. This field of science seeks to discover common principles, algorithms and tools that govern network behavior.

DBL is developing methodologies, algorithms, and implementations needed for scalable, dynamic, and resilient networks. Specific problems include querying composite networks, modeling dynamic networks, sentiment analysis, analysis of content and user behavior, discovering unusual patterns, and sampling in composite networks.

DBL PeopleDBL will use the CrowdSignals.io data for academic research, studying the dataset from a network-based modeling perspective.

Learn More:
Website: http://www.cs.ucsb.edu/~dbl/

Backer Profile: Thomas Ploetz, Reader at Newcastle University

Thomas PloetzThomas Ploetz is a Reader at the Open Lab at Newcastle University. His research is focused on computational behaviour analysis, that is building and deploying (statistical) models that capture behavior and enable quantitative assessments of it. Behavior is thereby captured opportunistically, e.g., through wearable or ubiquitous sensing. He considers himself working as an applied machine learning researcher.

The central theme of Thomas’ research is to develop techniques and systems that actually have an impact on people’s life. Therefore, his research is almost always connected to some practical application (in contrast to purely theoretical work) and he is keen on deploying systems he develops in the “wild”, i.e., in real-world settings. The most prominent domain for this kind of work is health where he is working on computational assessments of behavioral phenotypes of, for example, Parkinson’s, Dementia, or Autism. Within the Digital Interaction group at Newcastle University he is involved in a number of projects that address these research themes from different angles.

Open Lab Newcastle University

Thomas intends to use CrowdSignals.io mainly for unsupervised learning of behavior representations.

Learn More
Website: www.thomasploetz.de
Open Lab: https://openlab.ncl.ac.uk/

Featured Sponsor: Hiflylabs, Budapest

HiflylabsHiflylabs is a company that provides Business Intelligence, Consulting, and Customer Development services. Based in Budapest, Hungary, they create business value from data. Hifly carries out BI projects in many areas, from data mining and data warehousing to the solution of Big Data problems. To expand their activity, they established a mobile application development department, which has become a reliable element of our skill set. They have extensive experience with the tools of well-known data warehouse and BI technology vendors, and we also use new generation open-source solutions in their projects.

Marton Zimmer
Hiflylabs managing partner, Marton Zimmer.

The core team at Hiflylabs has been working together for 15 years, currently with more than 50 passionate employees: data analysts, data scientists and enthusiastic data ninjas. They have extensive experiences in working and managing multicultural projects and are keen on keeping their exceptional price/performance ratio on all projects.

Hifly will use the CrowdSignals.io data experiment with applying Big Data technology to sensor data, checking performance and usability possibilities.

Learn More
Website: http://hiflylabs.hu/english.html
Blog: https://blog.hiflylabs.hu/en/
Follow Hiflylabs on LinkedIn

Backer Profile: Rijurekha Sen, Post-doc At Max Planck Institute for Software

Rijurekha SenRijurekha Sen is a post-doctoral researcher at Max Planck Institute for Software Systems, Germany. She generally works with mobiles and sensors to build applications related to road traffic monitoring, energy measurement and targeted advertising in the retail sector. The technical skills involved in her kind of work are smartphone programming and embedded systems design, sensor data processing using applied machine learning, wireless networking to connect sensors and backend servers and data visualizations on static and interactive maps. There are some logistic skills involved in deploying the systems that she implements, in collaboration with government organizations or startups. Recently, she is working on mobile data privacy to see if cool mobile applications can be supported, even after ensuring data privacy! She is also interested in auditing mobile services and apps created by third parties to measure their functionality and privacy properties as an independent researcher.

mpi-sws

She will explore the CrowdSignals.io data primarily in the context of mobile privacy related research. Whether interesting mobile apps can be supported using encrypted data, needs real datasets to be evaluated. She is hoping that the CrowdSignals.io dataset will fill that gap of easily available mobile and sensor data, which can be used to test such research hypotheses or prototype systems.

Learn More
MPI Homepage: www.mpi-sws.org/~rijurekha

Backer Profile: R Venkatesha Prasad, Assistant Professor at TU Delft

R Venkatesha PrasadR Venkatesha Prasad is an Assistant Professor at TU Delft where he has been supervising Ph.D. and M.Sc. students and teaching courses. His work at TUDelft has resulted in 180+ publications and he also contributes to the academic community by reviewing and organizing conferences and workshops as well as by leading technical committees and memberships for standards boards. He is a senior member of ACM & IEEE.

Prof. Prasad completed his Ph.D. from IISc Bangalore, India in 2003 where he designed a scalable VoIP conferencing platform. The work involved understanding of network protocols, application design, and human computer interface. Part of the thesis lead to a startup venture, Esqube, where he lead the engineering of real-time applications including bridging anonymous VoIP calls called Click-to-Talk for Ebay.com, and filed both patents and PCT applications with his colleagues. Esqube was selected as top 100 IT innovators in India in 2006 by NASSCOM and top 100 in promising companies in Asia by RedHerring in 2008.

Since joining TUDelft as a PostDoc in 2005, he has worked on the EU FP7 Magnet Project and the Dutch project PNP-2008 on Personal Networks (PNs). He also started working on Cognitive Radio Networks (CRNs) and 60GHz networks for future homes. He is contributing to IEEE standards on CRNs. Now, his work involves the Internet of Things (IoT), Cyber Physical systems (CPS) and energy harvesting networks and he is working on EU funded iCore project on IoTs.

TU Delft

Data is everywhere but they are all fragmented. Venkatesha expects to use CrowdSignals.io data to deliver cohesive new insights.  He hopes to use the data from CrowdSignals.io for his research on developing “knowledge” from this data, going one step above “information processing”.

Learn More
TU Delft Page: http://homepage.tudelft.nl/w5p50
Homepage: https://sites.google.com/site/rvenkateshaprasad/